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While restricted rule-k has been succeeded in generating a connected dominating set
(CDS) of small size, not much theoretical analysis on the size has been done. In this paper,
an analysis on the expected size of a CDS generated by such algorithm and its relation to
different node density is presented. AssumeN nodes are deployed uniformly and randomly
in a square of sizeLN × LN (whereN andLN →∞); three results are obtained. (1) It is
proved that the node degree distribution of such a network follows a Poisson distribution.
(2) The expected size of a CDS that is derived by the restricted pruning rule-k is a decreas-
ing function with respect to the node densityn̂. For n̂ ≥ 30, it is found that the expected
size is close toN/n̂. (3) It is proved that the lower bound on the expected size of a CDS

for a Poissonian network of node densityn̂ is given by
{

1
n̂−1 − n̂

n̂−1 exp(−(n̂− 1))
}

N .

The second result is of paramount importance for practitioners. It provides the information
about the expected size of a CDS when the node densityn̂ is between6 and30. The data
(expected CDS size) for this range can hardly be provided by simulations.

Keywords : Connected dominating set (CDS), expected size, lower bound, restricted prun-
ing rule, wireless mobile ad hoc network.

1. INTRODUCTION

In wireless ad hoc networks, the selecting of a subset of nodes (i.e. construction of a virtual
backbone) for efficient message routing is always a crucial problem. In the last decade,
much research has been conducted in order to develop a simple and yet efficient algorithm
for the construction of such a virtual backbone. Amongst them, distributed algorithms
based on the idea of connected dominating set (CDS) [4] have been proposed and have
succeeded in generating a virtual backbone of small size [2, 10–13]. In these algorithms,
a CDS is constructed by going through two processes, namely themarking processand
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the pruning process. In the marking process, a node will mark itselftrue if it has two
unconnected neighbors. Otherwise, it will mark itselffalse. Once the marking process has
finished, eachtruenode will check if its local condition fulfills the conditions specified by
a pruning rule-k. With respect to the pruning rule-k, a marked node unmarks itself if there
existsa set of connected nodeswhose coverage can cover all its neighbors and, at the same
time, the ID of the marked node is smaller than the IDs of the connected nodes. If the
connected nodes are restricted to direct neighbors of the marked node, the pruning rule is
calledrestricted rule-k.1 Otherwise, it is calledunrestricted rule.

Although the Wu & Li decentralized algorithm is simple and efficient in terms of com-
putational complexity, little theoretical work has been done concerning the size of the CDS
being generated. Only Dai & Wu in [2] and Hansenet al in [5] have provided analytical
studies on this issue. LetN be the total number of nodes andN →∞, Dai & Wu showed
that the size of a pruning rulek CDS is of constant-times-larger than the minimal CDS.
Hansenet al considered the situation that the size of the square (sayL2

N ) grows linearly
with N . The expected size of a CDS derived by the restricted pruning rule -k is in an order
linear toL2

N and lower bounded byL2
N/π.

As observed from the simulated results presented in [2], this lower bound does not fit
the cases when the node density is low. In this regard, an in-depth investigation about the
expected size of a CDS generated by restricted pruning rule-k is inevitable. In particu-
lar, we would like to investigatehow the size changes with the node density, andwhen it
reaches the lower bound as derived in [5].

To do so, we need to derive the expected size of a CDS in terms of the node degree
distribution, and the probability that atrue node will turn out to be marked false during
the pruning process. We call the latter probability theunmarked probability. Here, node
degree is defined as the total number of neighbors a node has. Unfortunately, we will
state later in the text that this unmarked probability cannot be obtained analytically. The
random samplingtechnique is needed to determine these values numerically. Therefore,
the contributions of this paper are as follows.

1. For a network ofN nodes that are uniformly and randomly generated in a square
of sizeLN × LN , the node degree distribution follows a Poisson distribution when
LN , N →∞.

2. A procedure based on the idea of random sampling is proposed and the unmarked
probabilities against different node degrees are obtained.

3. It is found that the expected size of a CDS is almost a decreasing function with
respect to the node density. The size of the CDS reaches its lower bound when the
node density is greater than or equal to 30.

4. The lower bound on the expected size of a CDS for a Poissonian network of node

densityn̂ is given by
{

1
n̂−1 − n̂

n̂−1 exp(−(n̂− 1))
}

N .

The third result is of paramount importance for practitioners. It provides the information
about the expected size of a CDS when the node densityn̂ is between6 and 30. The
expected CDS size for this range can hardly be provided by simulations.

1In this paper, the termsrestricted rule-k andrestricted pruning rule-k are used interchangeably.



The rest of the paper is organized in four sections. In the next section, the algorithm
of the marking process and the restricted pruning rule will be presented. The node degree
distribution of a network of randomly deployed nodes will be analyzed and presented in
Section 3. An empirical procedure to obtain the unmarked probability and the analysis on
the expected size will be elucidated in the same section. Finally, the conclusion is presented
in Section 4.

2. RESTRICTED PRUNING RULE- k

Consider a mobile ad hoc network ofN nodes that are randomly and uniformly deployed
within a two-dimensional square of areaL × L. Because of the transmission power of a
radio signal, two nodes can communicate with each other if their distance apart is less than
an allowable transmission range, sayr (r ¿ L). In other words, two nodes are neighbors
if the distance between them is less thanr.

Once a node has been deployed, (i) it generates a uniformly random ID for itself and
broadcasts to other nodes nearby (if any) about its ID. Then, (ii) it waits and listens to the
signals from nearby nodes about their IDs and the IDs of their neighbors. In accordance
with the received list of IDs, the node can check whether its ID is unique. If the ID already
exists, the node will generate another random ID and then repeat steps (i) and (ii). (iii)
As long as the IDs have been received, it updates the list of the IDs of its neighbors and
broadcasts this neighbor information to its neighbors. The listen-update-broadcast cycle is
then repeated a few more times until there are no more updates on the neighbor list. The
resultant network graph is denoted byV .

When a complete list of neighbor information has been obtained, each node carries out
the following algorithm to determine whether it is a gateway node for message routing. Let
id(x) andN (x) be the ID and the set of neighbor nodes of a node located atx. The marker
of x is denoted byM(x).

Wu-Li Marking process [13]: A node located atx sets its marker toTrue, i.e. M(x) =
T , if there exists two unconnected neighbor nodes.

Dai-Wu Restricted Pruning Rule k [2]: A marked node unmarks itself if its neighbor
nodes can be covered by a set of connected neighbor nodes whose IDs are larger
than nodex. That is to say,M(x) = F , if there existsx1, x2, · · · , xk ∈ N (x) such
that

(i) M(x) = T

(ii) id(x) < id(xj) for all j = 1, 2, · · · , k.

(iii) N (x) ⊂ N (x1)
⋃N (x2) · · ·

⋃N (xk).

(iv) x1, x2, · · · , xk form a connected graph.

To realize Step(ii) in practice, each marked node first sorts the IDs of its neighbors
in ascending order. Then, all nodes with IDs larger thanid(x) will be selected. The
selected neighbor nodes are further checked with respect to their coverage (Step (iii)) and
connectivity (Step (iv)). Finally,M(x) changes toF if the selected nodes form a connected
graph and can cover all the neighbors ofx.



The beauty of this pruning rule is that the algorithm is completely distributed. Only
direct neighbor information is needed. No global information is required. Each node can
perform the pruning locally. Plus, the computational complexity is small. For a node of
degreed, its complexity is in an order ofO(d2)2. Consider a graph of finite-mean-node
degree (sayµ) and variance (sayσ2). It can be shown by the Chebyshev Inequality that

P (|d− µ| ≤ mσ) ≤ 1
m2

.

In other words, for a finitem, pruning(1−m−2) nodes has a complexity of justO(m2σ2).
The cost paid for conducting the marking and pruning process is low.

3. ANALYSIS

Assume a network ofN nodes, i.e.|V | = N . Let P (d) be the node degree distribution
of V . P (M(x) = F |deg(x) = d) is the probability that a node of degreed is unmarked
after the pruning step. During the marking process, a node will be marked if there are two
neighbor nodes ofx that are not neighbors to each other. As nodes are deployed uniformly
and randomly, the probability that a node of degreed will be marked in the marking process
will be given by

P (Nodex is marked|deg(x) = d) = 1− βd(d−1)/2, (1)

whereβ is the probability that the distance of any two random nodes within a unit circle is
less than or equal to the radius.

By conducting a computer simulation that generates 10,000 points uniformly and ran-
domly in a circle of radiusr, and then counts the percentage of pairs of nodes whose
separation is less thanr, it finds thatβ is equal to0.5852. Then

P (Nodex is marked|deg(x) = d) = 0.995

for d = 5. Figure 1 shows the probability that a node of degreed is not marked during the
marking process. Clearly, one can assume that this probability vanishes whend > 6.

Suppose a network graph is of Poisson node degree distribution with large mean node
degree. The percentage of nodes of small node degree will be very small. One can thus
assume that all nodes are marked after the initial marking process has been performed. The
expected size of the CDS can be given by

E[|Vcds|] = N

(
1−

∑
x

∑

d

P (M(x) = F |deg(x) = d)P (deg(x) = d)

)
. (2)

AsP (deg(x) = d) is homogenous for allx ∈ V , the expected size can simply be expressed
as follows :

E[|Vcds|] = N

(
1−

∑

d

P (M(d) = F |d)P (d)

)
, (3)

where the factorP (M(d) = F |d) corresponds with to the probability that a node of degree
d is unmarked.

2Theorem 4 in [2].
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Fig. 1: The probability that a node of degreed is not marked during the marking process,
i.e. βd(d−1)/2 versusd.

3.1 Node degree distributionP (d)

Suppose the nodes are randomly and uniformly distributed, and letn̂ be the average number
of nodes within a unit disk. The average node degreeλ will thus ben̂−1. The node degree
distribution ofV follows a Poisson distribution.

Theorem 1 For a mobile ad hoc networkV , in which the mobile nodes are randomly and
uniformly distributed, the node degree distributionP (d) is given by

P (d) = exp(−λ)
λd

d!
, λ = n̂− 1, (4)

wheren̂ is the average node density.

(Proof) Let N be the total number of nodes ofV , and the area of deployment is much
larger than a unit disk. The number of nodes deployed within a unit disk will then follow a
binomial distribution,

P{Exactlyn nodes in a unit disk} =
N !

n!(N − n)!
δn (1− δ)(N−n)

.

where

δ =
Area of unit disk
Deployment Area

.

For largeN , n̂ = Nδ and

P{Exactlyn nodes in a unit disk} = exp(−n̂)
n̂n

n!
.



Therefore, the probability of a node having node degreed (i.e. the number of neighbor
nodes) is given by a Poisson distribution with average node degreeλ = n̂− 1. Q.E.D.

For illusatration, Figure 2 shows two exemples in whichn̂ equals20 and10 respec-
tively.
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Fig. 2: The node degree distributions ofV for which the node densities are20 (λ = 19)
and10 (λ = 9) respectively. The y-axis corresponds to value ofP (d), while the x-axis
corresponds to the node degreed.

3.2 Unmarked probability P (M(d) = F |d)

Recall that a marked nodex unmarks itself if there existsx1, x2, · · · , xk ∈ N (x) such that

(i) M(x) = T .

(ii) id(x) < id(xj) for all j = 1, 2, · · · , k.

(iii) N (x) ⊂ N (x1)
⋃N (x2) · · ·

⋃N (xk).

(iv) x1, x2, · · · , xk form a connected graph.

Consider the condition (i). As we have assumed that all the nodes are marked,

P (M(x) = T ) = 1 ∀ x ∈ V.

Consider the condition (ii). For a node of degreed, it might have1 neighbor node,2
neighbor nodes,3 neighbor nodes and so on, up tod neighbor nodes that have IDs larger



than itself. Since all node IDs are uniformly and randomly generated in a constant range,
say[0, 1], the probability thatid(x) < id(y) for all y ∈ N (x) is given by

P (id(x) < id(y)|y ∈ N (x)) =
∫ 1

0

(1− u)du

=
1
2
.

As a result, the probability that exactlyk (k ≤ d) neighbor nodes that have larger IDs is
given by

P (Exactlyk out ofd neighbors having larger IDs) =
(

d
k

) (
1
2

)d

, (5)

for all k = 0, 1, 2, · · · , d.
The final question left behind is this:If there arek neighbor nodes with larger IDs,

will these nodes form a connected graph, and simultaneously will the rest of the other
d − k nodes be neighbors of these nodes? Unfortunately, it is not an easy question to
answer. It all depends on the locations of thesed neighbor nodes. Take a look at the
illustrative examples shown in Figure 3. In both cases,k = 6. Even though both sets of
neighbor nodes can cover the whole circle, one is connected (Figure 3a) and the other is
disconnected (Figure 3b).

Let Ω(x) be the unit circle centered at locationx. Let X = (x1, x2, · · · , xk) ∈ Ω(x)k

be an augmented random vector, in whichx1, x2, · · · , xk ∈ Ω(x). The graph induced
by X is denoted byGX . Furthermore, we letI(X) be an indicator function defined as
follows:

I(X) =
{

1 if GX is connected,
0 if GX is not connected.

(6)

The coverage ofX is denoted byCov(X), where

Cov(X) =
Area covered by

⋃k
j=1(Ω(xj) ∩ Ω(x))

Area covered byΩ(x)
. (7)

Therefore, the probability that(d− k) random nodes inΩ(x) can be covered by the other
k random nodes inΩ(x) will be given by

P (k, d) =
∫

X∈Ω(x)k

I(X)Cov(X)d−kdX. (8)

The probability that a node of degreed will be unmarked will thus be given by

P (M(d) = F |d) =
d∑

k=1

P (k, d)
(

d
k

) (
1
2

)d

(9)

and the expected size of CDS is given by

E[|Vcds|] = N

(
1−

∑

d

d∑

k=1

P (k, d)
exp(−λ)(λ/2)d

k!(d− k)!

)
. (10)
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Fig. 3: (a) and (b) show two illustrative examples in which the neighbor nodes ofx can
cover the whole circle. (a) Six neighbor nodes are located evenly on the circumference of
the circle. They form a connected graph. (b) Three neighbor nodes are located evenly on
the circumference and three other nodes are located at the lower half of the circle. The
graph being induced from these neighbor nodes is a disconnected graph. (c) and (d) show
two illustrative examples in which the neighbor nodes ofx cannot cover the whole circle.
Again, one forms a connected graph (c) and the other does not (d).



Unfortunately, there is no simple closed-form solution for the probabilityP (k, d), Equa-
tion (8). We obtained the values empirically by arandom samplingprocedure, as depicted
in Figure 4.

The idea of the procedure can be sketched as follows. In the first step, we generate
Z random nodes,x1, x2, · · · , xZ , within a unit disk centered at the origin (Step 1). In
the second step, for each value of node degree, sayk, we generate anotherk random
nodes,y1, y2, · · · , yk, within the same unit disk (Step 2.1.1). Then, we count thefractional
numberof xis being covered by they1, y2, · · · , yk and store the value in the arrayOL
(Step 2.1.2 and Step 2.1.3). Next, the connectivity of the graph induced byy1, y2, · · · , yk

is checked (Step 2.1.4). Finally the fractional number counted in the Step 2.1.3 will be
stored in an arrayPC if the graph is connected. Otherwise, the stored value will be set to
zero. The second step is repeatedM times. In our simulation,Z is set to10, 000. The value
of k ranges from1 to 25, andM is set to10, 000. So, before the simulation, we initialize
three 2D arrays (OL, CN andPC) of dimension25 × 10, 000. Their kjth elements,
wherek = 1, 2, · · · , 25 andj = 1, 2, · · · , 10, 000, correspond to the intermediate results
obtained in thejth simulation for node degreek.

Step 0: Initialize OL, CN, PC ∈ R25×10,000.

Step 1: Let Ω0 be the unit disk centered at(0, 0) and then uniformly randomly generate
x1, x2, · · · , x10,000 insideΩ0.

Step 2: Fork = 1, 2, · · · , 25,

Step 2.1: For j = 1, 2, · · · , 10, 000

2.1.1: Uniformly randomly generatey1, y2, · · · , yk insideΩ0,

2.1.2: Set NI equals the number ofxis that are located inside⋃k
κ=1 Ω(yκ)

⋂
Ω0.

2.1.3: SetOLkj equalsNI/10, 000.

2.1.4: SetCNkj equals1 if y1, · · · , yk form a connected graph.

2.1.5: SetPCkj equalsOLkj × CNkj .

Fig. 4: Random sampling procedure for obtaining the probabilityP (k, d), Equation (8).

Since thekjth element in the arrayPC is the valueI(X)Cov(X) of the jth set of
randomk nodes, the valueP (k, d) can then be obtained empirically by

P (k, d) =
1
M

M∑

j=1

PCd−k
kj (11)

for all k ≤ d. The unmarked probability of a node of degreed can be obtained. Figure 5
shows the unmarked probabilityP (M(d) = F |d) against node degreed.

It is clear that the minimum unmarked probability is attained whend equals5, where
the minimum unmarked probability is equal to0.3722. (This is due to the fact that there
is a small chance for a 5-node induced graph to form a connected induced graph.) The
unmarked probability reaches0.9661 whend = 25. It can be further noted from the figure
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Fig. 5: Unmarked probability.

that the value ofP (M(d) = F |d) increases asd increases, and then approaches1 whend
is large.

3.3 Expected size of CDS

In accordance with the formulae derived earlier for the average number of marked nodes
(Equation (3)) and the theorem about the nature of node degree distribution (Theorem 1),
the expected size of a CDS-derived restricted pruning rule can be expressed as follows :

E[|Vcds|]
N

=

(
1− exp(−λ)

{∑

d

P (M(d) = F |d)
λd

d!

})
, (12)

whereλ corresponds to the average node degree. Then, the expected size of a CDS derived
is evaluated by putting the values ofP (M(d) = F |d) as shown in Figure 5 and different
values ofλ into the Equation (12). Figure 6 shows the expected size of CDS againstλ. (For
convenience, we simply letP (M(d) = F |d) = 0.9661 for d > 25.) The solid line with
squares corresponds to the lower bound(λ + 1)−1. (Please refer to Appendix A for the
derivation of this lower bound.) It is observed that the size is about 0.55% of the original
network size whenλ = 6. The factor matches the result obtained in [2] for the sameλ and
N = 200. (Please refer to Appendix B for the reason why the comparison is only made for
λ = 6, not for other values ofλ in their paper.) In accordance with Figure 6, one can also
see that the size of a CDS drops as theλ increases. Eventually, it drops to its lower bound
whenλ is close to 30.
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Fig. 6: Expected size of a CDS derived by restricted pruning rule. The solid line with
squares corresponds to the lower bound(λ + 1)−1, while the solid line with circles corre-
sponds to our results.

3.4 A tighter lower bound

A tighter lower bound for PoissonianP (d) can indeed be derived from the Equation (12).
Consider a marked node of degreed. One condition that a marked node will be staying
marked, after the pruning process, is when its ID is larger than all its neighbors. This
probability is given by(d + 1)−1 for a marked node withd neighbors. Hence,

E[|Vcds|]
N

≥ exp(−λ)
∑

d≥1

λd

(d + 1)!
.

Since ∑

d≥1

λd

(d + 1)!
=

exp(λ)− 1− λ

λ
,

E[|Vcds|] ≥
{

1
λ
− λ + 1

λ
exp(−λ)

}
N.

In terms of node densitŷn,

E[|Vcds|] ≥
{

1
n̂− 1

− n̂

n̂− 1
exp(−n̂ + 1)

}
N. (13)

It is equal toN/(n̂ − 1) whenn̂ is large and this bound is tighter thanN/n̂ for all n̂ ≥ 4
(i.e. λ ≥ 3). Figure 7 compares the difference between the Hansenet al lower bound and
our lower bound. It is clear that there is no significant difference whenλ is large.
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Fig. 7: Comaprison between Hansenet al and our lower bounds. The y-axis corresponds
to the valueE[|Vcds|]/N , while the x-axis corresponds to node density ofV .

4. CONCLUSION

In this paper, we have provided an analysis on the size of a CDS derived by the restricted
pruning rule-k algorithm. For a network ofN nodes that are uniformly and randomly
generated in a square of sizeLN × LN , we have shown that the node degree distribution
follows a Poisson distribution whenLN , N →∞. To argue that the node degree distribu-
tion of the network does not change much after the marking process has been performed,
we have discussed the probability of a node being marked in the marking process and
shown that such a probability tends to vanish when the node density is high. After that, we
have derived an equation to evaluate the expected size of a CDS, in terms of the network
node degree distribution and the unmarked probabilities. As there is no closed-form solu-
tion for the connected probability and the coverage of a graph induced by random nodes
within a circle, a computer simulated procedure based on the idea of random sampling has
been developed to obtain such probabilities. The probability that a node of degreed will be
unmarked is obtained and hence the expected size of a CDS can be obtained. Finally, the
expected size of a CDS derived by the restricted pruning rule-k is analyzed with respect to
different node densities. It is found that the size is almost a decreasing function with re-
spect to the node density. The size reaches its lower bound when the node density is equal
to or greater than 30. That is to say, the CDS derived by the restricted pruning rule-k al-
gorithm in a high node density situation is a minimal CDS. The results are consistent with
the existing results previously obtained in [2] and [5]. More important, our results have
filled in the gap,6 ≤ λ ≤ 30, that has not been investigated before. By applying a similar
technique, analysis on other distributed methods, such as the extended works presented
in [10,14,15], for constructing CDS might also be possible.
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APPENDIX

A Hansenet alLOWER BOUND [5]

Instead of running extensive computer simulations, Hansenet al have presented a theo-
retical analysis on the size of a CDS derived by the restricted pruning rule in [5]. In one
of their theorems (Theorem 5 in [5]), they show that the size of a CDS is lower-bounded
by l2N/π for lN → ∞. HerelN is the length of the square where the mobile nodes are
deployed. For an ad hoc network consisting ofN nodes,l2N/π is equal to the total num-
ber of nodes over the node density. As node density is equal to the average node degree
plus 1 (i.e. n̂ = λ + 1), the lower bound of the expected size of a CDS derived by the
restricted pruning rule depends on the average node degree of the Poissonian node degree
distribution :

E[|Vcds|] ≥ N

λ + 1
. (14)

B Dai & Wu RESULT [2]

In our analysis, we assume the network is of Poisson node degree distribution. For a
network of N nodes deployed in a square of sizeL × L, and each node has transmission

ranger, the Poisson node degree distribution happens whenr ¿ L and r
L =

√
λ+1
πN .

This condition is equivalent toλ ¿ N for whenL is finite. Therefore, the node degree
distribution is close to a Poisson distribution only whenλ is small. The simulated results
in [2] for the expected size of a CDS atλ = 6 is consistent the results obtained in this
paper. On the contrary, the node degree distribution of a largeλ network could hardly
follow a Poisson distribution. A comparison between their results and the results presented
here could not be made.


